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J .  Phys. A: Math. Gen. 22 (1989) 1599-1608. Printed in the U K  

On the Lagrangian and Hamiltonian constraint algorithms for 
the Rarita-Schwinger field coupled to an external 
electromagnetic field 

w cox  
Department of Computer Science and Applied Mathematics, Aston University, Aston 
Triangle, Birmingham B4 7ET, U K  
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Abstract. The complete constraint analysis for the Rarita-Schwinger 1 field coupled to an 
external electromagnetic field is given, showing the parallel between the Lagrangian and 
Dirac-Bergman algorithms. The analysis confirms the connection between the Velo- 
Zwanzinger and Johnson-Sudarshan pathologies, and illustrates that these do not, in fact, 
arise because the constraint analysis leading to them is incomplete. On the contrary, a 
new tier of constraints occurs for the critical field values, reducing the pathology to a 
field-induced change in degrees of freedom. 

1. Introduction 

Some time ago Hasumi et a1 (1979, hereafter referred to as HEK) studied the Dirac 
quantisation of a massive spin-3 particle coupled to an external magnetic field. Apart 
from the intrinsic interest of the Dirac constraint quantisation applied to such a coupled 
field, HEK were also interested in the manifestation of the Johnson-Sudarshan incon- 
sistency in the Dirac algorithm (Johnson and Sudarshan 1961, hereafter referred to as 
JS). Johnson and Sudarshan pointed out that that anticommutators for the Rarita- 
Schwinger field coupled to an external electromagnetic field are indefinite. This well 
known inconsistency has been throughly discussed but HEK examined its origins 
carefully, finding that the constraint analysis by which it is normally obtained was not 
complete. For certain values of the external field the secondary constraint used to 
obtain the ‘true equation of motion’ leading to the JS problem degenerates and a further 
heirarchy of constraints appears, which has to be analysed. This results in a loss of 
two degrees of freedom and the final anticommutator in such cases is much more 
complicated than that of JS. 

Another well known Rarita-Schwinger coupling inconsistency is that of Vel0 and 
Zwanzinger (1969, hereafter referred to as vz), which occurs even at the classical level. 
vz showed that, for certain values of the external field, the field equations either 
propagate acausal modes or even do not propagate at all. The vz analysis is done 
covariantly by a Lagrangian constraint algorithm, but the problems again surface when 
the secondary constraints are used to get the true equation of motion. At about the 
same time as the HEK analysis Takahashi and Kobayashi (1978), when discussing the 
connections between the JS and vz problems and the Gribov ambiguity, also noted 
the degeneracy of the secondary constraint at a critical field value, referring to the 
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same observation in earlier work by Jenkins (1974). The values of the field at the onset 
of the vz and JS problems coincide, indicating an underlying common origin for both. 
Indeed Kobayashi and Takahashi (1987) have recently explored this question by a 
modified Dirac constraint algorithm, and have identified the common source of the 
difficulty as the invertibility condition required for a unique solution of the secondary 
constraint. However, these authors did not proceed past the invertibility condition in 
the case when it is violated, which is precisely the case for the values of the field 
yielding acausality in the vz analysis. Effectively, they stopped short of the full 
constraint analysis employed by HEK in pursuit of the JS problem, in which the next 
hierarchy of the constraint algorithm is entered for the critical values of the external 
field. 

In this paper we complete the vz Lagrangian constraint analysis, in direct analogy 
to HEK. There is again a loss of degrees of freedom, pre-empting the vz causality 
problem. This of course offers no resolution of the paradoxes to which the coupled 
Rarita-Schwinger field is prone, but it gives an understanding of their deeper structure. 
Since the HEK analysis is via the Dirac-Bergmann constraint algorithm (as is that of 
Kobayashi and Takahashi), while the vz treatment is via a Lagrangian constraint 
analysis it is necessary to exhibit the correspondence between these two constraint 
algorithms. The equivalence between the Lagrangian and Hamiltonian constraint 
algorithms for Lagrangians yielding second-order equations of motion has been shown, 
in general, in the work of Gotay and Nester (1979) and Batlle er al (1986). The 
modification of this equivalence theorem for first-order Lagrangians such as the 
Rarita-Schwinger example has been presented by Scherer (1986) in coordinate-depen- 
dent form and by Caririena et a1 (1988) in geometric form. The analysis given here 
provides an interesting example of this equivalence. 

2. The Lagrangian and Hamiltonian constraint analysis for first-order Lagrangians 

The general features of the Lagrangian and Hamiltonian constraint analysis procedures 
are well known and are described, for finite-dimensional dynamical systems, in Sudar- 
shan and Mukunda (1974), for example. The case in which the Lagrangian is linear 
in the velocities has been treated in detail by Scherer (1986), who shows the precise 
connection between the Lagrangian and Hamiltonian constraints for such Lagrangians. 
The extension to field theories is formally straightforward (although the occurrence 
of spatial derivatives in the constraints demands careful consideration of spatial 
boundary values in a rigorous treatment (Sundermeyer 1982)) and is briefly summarised 
here for convenience. 

We consider a Lagrangian with the spacetime decomposed form 

z= 4rA:s(4)d*4S - H(4, a d )  (2.1) 
for component fields 4r ,  r = 1, .  . . , n. 

The Euler-Lagrange equations are 

&:)(4)ao4s = P ( 4 )  
where 
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and 

For a singular system the determinant of the coefficients in (2.2) is zero: 

I B‘,?’I = 0. (2.5) 
Not all the ‘velocities’ d 0 4 ,  can be determined, and constraints arise. 

The Lagrangian constraint algorithm consists of determining the left null eigenspace 
of B(O) and evaluating the equation (2.2) on this eigenspace, thereby obtaining a set 
of Lagrangian primary constraints 

X m ( 4 J )  = O  a = 1 , 2 , .  . . , K “ ’ .  (2.6) 
(In general this stage may be reached only after an iterative process in which constraints 
achieved at one step may modify the null eigenspace of B‘O’, when it is determined 
on the corresponding constraint submanifold, resulting in the production of new 
constraints when consistency with (2.2) is required.) 

The next step in the Lagrangian analysis is to demand that the constraints (2.6) be 
preserved in time on the constraint hypersurface. This produces new equations for 
the velocities, a04’, which must be reconsidered in conjunction with (2.2) as a new 
system of equations 

(2.7) B$)ao4’ = b6’) s = 1, . . . , n + K‘’) 

with 

By examining the left null eigenspace of B$’ and demanding consistency of (2.7) 
on this eigenspace we may determine more of the velocities and may also obtain further 
secondary constraints. Repeating this procedure as necessary the final situation reached 
can be arranged in the form of K Lagrangian constraints: 

re(+) = O  a = 1 ,  . . . ,  K (2.9) 

Bsja04’ = b, s = l , .  . . , ( n + K )  (2.10) 

and n + K equations for the velocities 

where 

(2.11) 

where El‘’’, b“’ are as defined in the Euler-Lagrange equations (2.2). The left null 
eigenvectors of B produce no new constraints which are independent of the r,. If, 
finally, rank B = R < n then R of the velocities a&J can be uniquely determined while 
the remaining n - R appear as arbitrary functions in the solutions to the equations of 
motion. 
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In the corresponding Dirac-Bergmann Hamiltonian constraint analysis of (2.1) the 
definition of the canonical momenta fields as 

(2.12) 

yields, for the singular case, the Hamiltonian primary constraints 

yr  = r r  - 4'A:,(4) = 0. (2.13) 

Introducing Lagrange multipliers A r,  a primary constraint Hamiltonian density is 

%(4, = H ( ~ , ~ & ) + A ' Y ~  (2.14) 

now defined as 

and is used to guarantee time preservation of the primary constraints 

Y r = { r r ,  XJ-0 (2.15) 

{ , } denoting the functional Poisson bracket and = denoting weak equality. This results 
in the equations 

(2.16) 

Bf', bio' being as defined in (2.3) and (2.4). The equality in (2.16) may be taken as 
strong since the constraints (2.13) restrict only the momenta fields, lr,, which do not 
occur in (2.16). Equation (2.16) is identical to the Euler-Lagrange equation (2.2), but 
the Lagrange multipliers A '  now play the role of the velocities. 

The constraint structure of (2.16) may now be analysed in direct analogy to the 
Lagrangian constraint analysis of (2.2). The condition that (2.16) has solutions for 
the A '  produces a set of secondary Hamiltonian constraints 

(2.17) 

identical to the Lagrangian primary constraints (2.6). Time preservation of (2.17) and 
repeated iteration of the constraint analysis now follows analogous steps to the 
Lagrangian case, with time preservation now ensured via 

Bf'( +)A'  = bIo'( 4)  

X u ( 4 )  = O  a = 1,  * * . , K(O' 

{constraint, Xc} = 0. 

The problem is now one of determing the A '  rather than the a04'. The final situation 
in the Dirac-Bergmann algorithm is as follows. 

There are n Hamiltonian primary constraints 

Y i ( 4 ,  r ) = O  

K r-ary ( r  3 2) Hamiltonian constraints 

ra(4) = o  a = 1 ,  . . . ,  K 

and the multipliers obey the equations 

BsjA ' = b, 

with B and b as defined in the Lagrangian case (2.11). 
The conditions for existence of unique solutions for the A '  yield no new constraints 

independent of the r,. The ( r  + 1)-ary Hamiltonian constraints of the Dirac-Bergmann 
algorithm are the same as the r-ary constraints of the Lagrangian analysis. 
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3. Application to the Rarita-Schwinger equation coupled to an external 
electromagnetic field 

The Lagrangian density for the spin-; Rarita-Schwinger field 4, coupled to an external 
electromagnetic field A,, is 

z= ti&APpY&A y 5  y P V P  a CC, -t iEAPpYa,$A y 5  y,+p + m&aAp+,  + eeApP”tjA y 5  y , + p ~ ,  ( 3 . 1 )  
where 

Y 5 = Y  0 1 2 3  Y Y Y $A = $:Yo =f( y P y ”  - yYyP)  

and the conventions are 

1=-& 0 1 2 3 .  gFU = ( 1 ,  -1, -1, - 1 )  = gpy &0123 = 

The Euler-Lagrange field equation resulting from varying (cl, in ( 3 . 1 )  is perhaps best 
written in the form 

E , = y .  ~ + , - y , ~ ~ . c C , - ~ , y . c L + y ~ y ~ ~ y . c L - m ~ , + m y , y ~ + = O  ( 3 . 2 )  

where 

a .  b = a p b P  

and 

IT, = ia, + eA,. 

As is well known, a spacetime decomposition of ( 3 . 2 )  reveals the absence of the 
‘velocity’ do+o. In particular the K = 0 component of ( 3 . 2 )  gives a Lagrangian primary 
constraint 

( 3 . 3 )  

where a = ( a , ,  a 2 ,  a 3 )  and a b = a’b,,  i = 1 , 2 , 3 .  Equation ( 3 . 3 )  contains no field time 
derivatives at all. The spatial components of ( 3 . 2 ) ,  K = 1 ,  2 ,  3 yield equations for the 
time derivatives do$’. 

Before proceeding to the next stage in the constraint analysis we must check that 
( 3 . 3 )  is the only primary constraint resulting from algebraic operations on the field 
equations ( 3 . 2 ) .  The only such operations open to us are multiplications and contrac- 
tions with g p ”  and the independent elements of the Dirac algebra, y , ,  [ y P ,  y o ] ,  y 5 y , ,  
y 5 .  It is easily verified that all such operations on E,  amount to either (3 .3)  or 
contraction with y K ,  which produces 

m.+-  y -  m y -  $ - m y .  + = 0  

2 ( y .  ~ y - 1 ~ ) - + + 3 m y . + = O  ( 3 . 4 )  
which is not a constraint but simply a useful relation between the velocities do&. Thus 
( 3 . 3 )  is the only primary constraint, corresponding to ( 2 . 6 ) .  

One must now examine the conditions arising from time preservation of ( 3 . 3 ) .  
Since ( 3 . 3 )  is, in fact, already implicit in ( 3 . 2 )  it is convenient to maintain manifest 
covariance and contract ( 3 . 2 )  with T,, which results in 

ie 
m ( ( y .  T ) ~ - T )  ~ - ~ y 5 & , , , A y Y F P K 4 *  = O  ( 3 . 5 )  

where F P Y  = apA‘ -a”Ap. 
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Equation (3.5) contains field time derivatives, and when combined with the original 
equations (3.2), corresponds to equation (2.7), from which we must extract the essential 
secondary constraints. Algebraic manipulation of (3.2) and (3.5), via (3.4), thus results 
in the well known secondary constraint 

y * I,!I + Ay5~,,,,, yYFpKI,!IA = 0 (3.6) 

where A =ie /3m2.  Equation (3.6) guarantees the time preservation of the primary 
constraint (3.3). 

Now the constraint analysis will be complete if (3.6), in conjunction with the 
original field equation (3.2), allows determination of the time derivative of $to. This 
was the problem investigated by Vel0 and Zwanzinger, by substituting (3.6) back into 
the field equations to obtain a 'true equation of motion': 

(3.7) 

[ ( M p ) " , a ,  - B t l I ( I A  = O  (3.8) 

5 ( 7  * 7~ - m) I,!I, + ( T, + f m y K ) A y  E,,,A y"F'IKI(IA = 0. 

Written as a first-order matrix differential equation this becomes 

where the derivative coefficients are 

[M'"]:  = gKAy'l +Ay5s,,AyYFP"g,p'. (3.9) 

The characteristic surfaces for the system (3.8) have normals n, determined by 

D ( n )  = I[M'];n,l =o. (3.10) 

The well known acausality problems of Velo-Zwanzinger arise if there are spacelike 
characteristic surfaces-that is, if there exist timelike normals n,. By Lorentz covari- 
ance we can seek such normals in the form (n, 0, 0, 0) in the forward light cone, and 
then (3.10) simplifies to 

(3.11) D ( n )  = n'61MOI = 0 

where 

[ M O ] ;  = gKAy0+ A y 5 ~ a v p h y " F p u g ~ .  (3.12) 

Thus, if there are values of the external field FFY such that lMol = 0, then (3.11) allows 
non-zero solutions for n, timelike normals and therefore spacelike characteristics exist, 
and acausality ensues. The condition [Mol = 0 reduces to 

(3.13) 

and, as shown by Vel0 and Zwanzinger, this allows values of the external field leading 
to acausal propagation. 

However, the above analysis of vz is incomplete. For precisely the case which 
allows the occurrence of spacelike characteristic surfaces, namely I Mol = 0, ensures 
that the constraint (3.6) fails to determine all the components of JIo, and so (3.6) is 
then not the end of the constraint analysis. Thus, the coefficient of in (3.6) is the factor 

yo+ A ~ ~ E , , , O ~ " F ~ "  (3.14) 

which occurs in (3.13), and if this operator is singular, as required by (3.13) then (3.6) 
fails to determine all the components of +bo. This point was observed by Takahashi 
and Kobayashi (1978) and Jenkins (1974), but taken no further. The vz prediction of 
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acausality is therefore premature because, under those circumstances for which it 
occurs, the constraint analysis is still not complete. The fact that (3.6) is not the last 
word in the constraint analysis was noted by H E K  in the context of the Dirac-Bergmann 
constraint analysis of the JS problem, although they made no reference to the vz 
problem. Since we now know that these two pathologies are related (Kobayashi and 
Takahashi 1987) in the Dirac-Bergmann analysis, then the H E K  treatment of the JS 
problem must have a parallel in the vz Lagrangian analysis. Incidentally, the factor 
(3.14) corresponds essentially to the operator ( d c t )  of Kobayashi and Takahashi, which 
is identified as the common source of the JS and vz problems, being the subject of the 
invertibility condition which generates these problems. However, like vz and JS they 
do not proceed past the secondary constraint (3.6), leaving the analysis incomplete. 
Following in parallel to the H E K  analysis of the JS problem we now complete the 
Lagrangian analysis by looking at the time preservation of (3.6) for the case when the 
factor (3.14) is singular. 

Following HEK, we assume for simplicity that F,, = 0 and Fv = constant, and write 
(3.6) in the form 

2RyoI,bo+rKI,b, = 0 (3.15) 

where 

R = i[ 1 - A U " F ~ ]  

rK = y K  + A Y ~ Y " Y ~ F ~ ,  

(3.16) 

(3.17) 

and 2Ry0  is the operator (3.14). If R is non-singular then (3.15) determines all the I,bo 
in terms of the and since all the time derivatives of the latter are determined by 
(3.2), all 'velocities' are determined and the constraint analysis is complete. The 
operator R satisfies the equation 

R2 - R +a( 1 + 4h2B2) = 0 (3.18) 

where B is the magnetic field B'=i&vkF,k,  and 

(3.19) 

Thus, if R is singular then 

1 + 4h2B = 0 

and R becomes a projection operator: 

(3.20) 

R ~ =  R. (3.21) 

Equation (3.20) is the putative vz condition for acausal propagation, as noted above. 
Defining 

E = I - R =;(I  + A U ~ F ~ )  (3.22) 

we project the secondary constraint (3 .15 )  into 

2Ry,1,b~+ Rrk& = 0 (3.23) 

Erk*, = 0. (3.24) 
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Thus, when R is singular, only the projection RJlo is determined by the secondary 
constraint. To determine h,b0 we must consider the time preservation of (3.24)-the 
time preservation of (3.23) clearly tells us nothing about R$,: 

i r k $ k  = 0. (3.25) 

This new equation for the 'velocities' must now be considered in conjunction with the 
other such equations, namely the original field equations (3.2), the K = k component 
of which gives, on application of the constraint (3.23), 

i yo$k = ( r k  + tmyk)  yO$O - ( y (3.26) - m ,  $k + ( r k  + f m y k )  yi$i 

where, without loss of generality, we have taken A. = 0 for convenience. 
Substituting (3.26) into (3.25), and using the results 

T k  = R y k  + y k R  (3.27) 

rk(  r k  + i m y k )  = y ?rR + R y  * (3.28) 

I?R=O (3.29) 

-I- m( 1 + R )  

and the constraint (3.23), finally results in the tertiary constraint 

I?yo$o+dAk$k=O (3.30) 

where 

2e2 4i e 
A k =  y k +  Fnmr"ymFijy'glk -7 Fijriglk.  

m(3m2)' 3m 
(3.31) 

Equation (3.30) determines and so, along with (3.23), cL0 is determined entirely 
in terms of $ k y  the time derivatives of which are determined by (3.26), on substitution 
for However the new relation (3.24) between the $k signals a loss of degrees of 
freedom due to the external field taking certain values-there are now six degrees of 
freedom, compared with the usual eight for a massive spin-; field, a point noted by HEK. 

To exemplify the Scherer connection between Lagrangian and Hamiltonian con- 
straint analysis we briefly outline the HEK Dirac-Bergmann analysis. 

The conjugate momenta to +: ( a  denotes the bispinor label) define primary 
Hamiltonian constraints: 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

H = - l iEAPPu  2 ~ A y S y p ~ , ~ o + t i & A p F u a ~ ~ A y 5 y F ~ p  - mtjAaAP$, - e ~ A p F w t j A y S y p ~ p ~ u .  (3.37) 

Now time preservation of the primary constraint (3.33) yields, on evaluation of 
{p",, Xc} = {r?, Xc}  = 0, the secondary Hamiltonian constraint 

uvri$j + myi@,  = o (3.38) 
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which is identical to the primary Lagrangian constraint (3.3). Time conservation of 
(3.32) simply yields the conjugate to (3.38). 

Time preservation of (3.35), on the other hand, produces the equation (again 
assuming A. = 0 without loss of generality) 

i d k A I  + .5°kJ~y0y5y0v~+,  + uk/.rrl+bO+ myoukp+p = 0 

which, on use of the primary constraint (3.38), solves for the A k  as 

i y 0 h  = - ( y  - m)+k + ( r k  + i m y k )  ?'+r + ( r k  + t m y k )  yo$O (3.39) 

This confirms, with (3.26), that the Lagrange multipliers hk play the role of the field 
time derivative, h k  = $ k .  

Now time preservation of the primary constraint (3.28) yields 

u".rr,A, + my 'A, = 0 

whence substitution from (3.39) and use of (3.28) gives the tertiary Hamiltonian 
constraint 

2 y 0 ~ $ o + r i $ ,  = o  
i.e. the secondary Lagrangian constraint (3.15), equivalent to (3.6). 

The rest of the constraint analysis is now straightforward, parallel to the Lagrangian 
case. At each stage the ( r +  1)-ary constraints of the HEK analysis correspond to the 
r-ary constraints of the Lagrangian analysis, as in the general analysis of Scherer. The 
Lagrangian multipliers A,, correspond to the field time derivatives and are determined 
in a similar way. 

4. Conclusion 

The full constraint analysis for the Rarita-Schwinger spin-3 field coupled to an external 
electromagnetic field has been given, showing the parallel between the Lagrangian and 
Dirac-Bergmann algorithms, as described for a general first-order system by Scherer 
(1986). It is shown that the vz analysis, which found acausal propagation, is incomplete 
and that those values of the field which ostensibly lead to such problems in fact mark 
a degeneracy in the secondary constraint which is equivalent to a loss of degrees of 
freedom. This parallels a similar analysis of the Johnson and Sudarshan problem by 
Hasumi et a1 (1979), and effectively confirms the connection between the vz and JS 

problems noted by Kobayashi and Takahashi (1987), but illustrates this right through 
the complete constraint analysis. 

That the acausality and quantisation pathologies of vz and JS, in fact, seem to 
degenerate to a loss of degrees of freedom problem is interesting. It means that the 
type of pathology which can occur may not be so wide as first thought, and it may be 
possible to concentrate attention on just the loss of degrees of freedom problem. Also, 
it would be interesting to know how general this feature is. No quantisable massive 
theory of a coupled high spin field is known to be problem free, but perhaps the 
problems are more restricted than previously believed. 

One of the motivations for the present analysis is to set the vz and JS analysis in 
the context of general Lagrangian and Dirac-Bergmann constraint algorithms and the 
connections between them for first-order singular systems. In recent years these 
constraint algorithms have been formulated in geometric terms (Cariiena et a1 1988), 
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effectively geometrising the Scherer analysis, and it should now be possible to translate 
the vz/Js-type consistency analysis into a coordinate-independent geometrical form. 
Apart from possible insights this may give into high spin consistency analysis, it will 
also provide a connection with the predominantly geometric modern approach to 
massless gauge theories. 
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